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Note 

On the Numerical Generation of Boundary-Fitted 

Orthogonal Curvilinear Coordinate Systems* 

INTRODUCTION 

A recent series of papers by Thompson et nf. [l-3] has presented a powerful 
technique for the numerical generation of boundary-fitted curvilinear coordinate 
systems. Their technique is based on the numerical solution of coupled second-order 
partial differential equations, subject to some arbitrary specification of 6 around the 
boundary (in the notation of [l-3], which is used throughout this note). But because 
the differential equations are determined independently of the 5 boundary conditions, 
the generated coordinate system is not, is general, orthogonal. 

For some applications it is more desirable to have an orthogonal coordinate 
system than to have a predetermined spacing of the c coordinate lines around the 
boundary. Consider, for example, the evaluation of the outward normal derivative of 
an arbitrary functionSat the boundary of the region of interest. If the boundary is a 
line of constant 7, then 

where A is the outward unit normal, /zep and h,,, are the scale factors of the (x, y) to 
(f, q) transformation, 

I?,, = (La” -I- &2)-l/a = J(x,,” + y,,2)-I/‘, 

/I,, - (Tr2 + 7),Jy!2 -. J(x,2 -(- y,2)- ‘/2, 

and J y- xE y,, - x,, y, is the Jacobian of the transformation. 
lf the 6-q coordinates arc orthogonal, Eq. (I) reduces to just 

(2) 

The scale factor notation can be simplified as shown since Iz,, = hnS = 0 for ortho- 
gonal systems, and there is no ambiguity in the USC of :I single subscript. 

Obviously, Eq. (2) is much simpler than Eq. (i), and is to be preferred for most 
analytical purposes. Less obviously, but of importance to numerical schemes, Eq. (1) 
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couples the [ and 7 variations of the function f. Thus the a~~~~ca~~~~ of a boundary 
Gondition onfmay involve the difference of two large numbers, with a possible loss of 
numerical precision. 

The desirability of using orthogonal curvilinear coordinates has been appreciated 
by past authors. Reid et al. [4] have employed orthogonal coordinates in storm surge 
simulations. Their orthogonal curvilinear coordinate system was obtained by re- 
presenting the transformation as a truncated Fourier series with complex argument 
VJ = 5 + iq. Since their functional series is everywhere analytic, the real and imagi- 
nary parts of the expansion form conjugate harmonic pairs, and the ~ra~sformat~o~~ 
is conformal. They are thereby guaranteed an orthogonal mesh. The coefficients of 

eir series were determined by a least-squares procedure in which the coastal and 
seaward boundaries were fit to 7 coordinate lines. They subsequently employed a 
second transformation to stretch and pack their grid for greater resolution in key 
areas. 

eid et al. is fundamentally analytic. If the coordinates are not 
heir procedure approximates the correct transformation with an 
by the number of terms used in the Fourier series. However, if the 

coordinates are subsequently stretched, then the new coordinates do not satisfy a 
least-squares error criterion because the final set of coordinates is not determine 
simultaneously. This feature is undesirable. 

Pope [5] also generated orthogonal, boundary-fitted coordinates for use in fluid 
how problems. He began by formulating a very general problem, but he then restricted 
his solution to a class of transformations that corresponds to a uniform stretching of 
one of the conjugate pair variables. Unlike the method of Reid et al., Pope’s method 
is fu~dame~ta~~y numerical. Pope alluded to the probie,m of the dependence of the 
transformation on the x-y and (-91 domains. We shall further discuss this matter in 
the section on the conformal module. Although Pope’s stretching allows some con- 
centration of coordinates in a user-selected direction, it is not an ideal method for 
modeling mixed boundary layer and potential flow regions. 

This note shows that for certain geometries the numerical method of Thompson 
et al., can be modified so that orthogonal coordinates are generated. The properties 
of conformal transformations are used to outhine the constraints on the method, but 
the final numerical procedure explicitly incorporates general stretching transforma- 
tions. The solution technique, therefore, considers all coordinates s~rn~~ta~eo~s~~~ 
This note can thus be regarded as a generahzation of the methods of both Pope and. 
Thompson et ai 

THEORY 

Following Thompson et al., f and 7 are required to satisfy Laplace’ equation 1n the 
x-y plane: 

vy = 8, 

v%j = 0. 
(3) 
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The essence of the method is that the inverse problem for x and y is now posed based 
on Eq. (3) and the boundary conditions, and a numerical solution is found. This idea 
is not original with Thompson et al. Winslow [6] and Chu [7] used Eq. (3) to generate 
boundary-fitted coordinates, which then were used to define a triangle mesh. They did 
not consider the possibility of generating orthogonal coordinates, since a triangle 
mesh excludes orthogonality of the coordinate lines. 

Our development begins with the requirement that 8 and 77 be a conjugate harmonic 
pair, thereby causing the t-r contours to be orthogonal. The condition for .$ and 7 to 
form a conjugate harmonic pair is that they satisfy the Cauchy-Riemann equations 

The Cauchy-Riemann equations imply that the scale factors of the transformation, 
he and h, , satisfy hE = h, = J1jz. A consequence of this equality of scale factors is 
that distances in the physical plane corresponding to equal increments of E and “/I are 
locally equal. For many applications, such as those involving boundary layers, this 
equality is undesirable because gradients in one direction may differ greatly in magni- 
tude from gradients in another direction. Pope formulated constraints similar to 
Eq. (4), but he required the ratio of the scale factors to be a constant throughout the 
grid. In either case, the transformation is too constrained to be a general technique. 

If two variables x and 5 are defined as monotonic functions of E and 7, respectively, 
then a countour of constant x is parallel in the x-y plane to its corresponding ,$ 
contour, and likewise for the [ and 17 contours. Thus x and t: are mutually orthogonal, 
but their scale factors can be adjusted through the choice of the transformations, 
thereby providing any desired packing of the x-5 coordinate lines. 

For convenience of notation, let t and 17 be written as monotonically increasing 
functions of x and 5, respectively, 

e =.f(xh 
(5) 

?1 = g(5); 

then it is readily seen that x and < retain orthogonality. Use of (5) in (3) gives 

V”x = - g vx * By, 

(6) 

v21; = - $ V[ . 05, 

where f’ E df[dx, f” 2 d2f/dx2, etc., and f’ # 0, g’ # 0. 
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The Cauchy-Riemann equations imply 

and (7) 

The independent variables must now be interchanged and the inverse problem 
formulated based on Eqs. (6) and (7). The transformed Cauchy-Riemann conditions 
(7) treating s and J as dependent variables and x and l as independent variables. 
bccomc 

Transforming (6) and applying (7) yields 

-Y(x) = 0, 

Y(y) -.= 0, 
v,;here 

and 

F(X) f”(x> 
f’(x) . 

G( 5) - h-“~:,. 
X’(C) 

It is to be noted that the equation for .Y does not explicitly depend upon y, and v:ce 
versa. However, the solutions for .Y and y are coupled through the application of the 
boundary conditions. 

RWNI)AKY CVNIXI ICES 

Equation (9) was dcvclopcd under the rcquircmcnt that the Cauchy-Ricmann 
equations hold in the interior; by implication, they must also hold on the boundaries. 
If. for example, a Dirichlet boundary condition for ~1 is applied on one segment of the 
5 boundary, then y, and thus .s-~ are known, so that a Neumann condition on Y must 
bc imposed along the same boundary. This linkage provides the coupling between the 
x and y solutions. 

The technique is most easily explained through the use of a specific example. 
Figure I shows a geometry which might arise in the study of a free-surface wave. The 
values of x on the lateral boundaries and the values of y on the bottom and surface are 
spccificd and result in Dirichlct conditions. Complcmcntary Neumann conditions for 
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x on the bottom and surface and for y on the sides are obtained from the Cauchy- 
Riemann equations (8). Thus on the bottom and surface x is required to satisfy 

Y 
m 

y= b2(x)=b2[x(X,C21] 

x=al (yl 

=al[y(xl,S 11 x=x, 

x-a,(y) 

x=x2 =a2[ y(X2,C)I 

I i 5, 
1 

y=b,d=b, [x(X,~,,] 

>X 

FIG. I. Example of geometry of a free-surface wave in the physical plane. 

5 
A 

y= b,(x) 
52 0 

yx = - $ xc N X(y)= 0 N yx=--;; xc 

51 
D 

XI 
>X 

y= b,(x) X2 

FIG. 2. Boundary conditions for x and y  in the transformed plane. D and N denote Dirichlet 
and Neumann conditions, respectively. 
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and on the sides y must satisfy 

These equations are simultaneous in nature, since y is known only as a function of X, 
and not as a function of x, at the surface and bottom. Figure 2 shows the boundary 
conditions in the transformed plane. 

THE CONFORMAL MODULE 

A rather subtle constraint on the transformation from the physical plane Y (Fig. 1) 
to the transformed plane I (Fig. 2) remains to be discussed. For simplicity consider 
the case of no coordinate stretching, .$ = x and 7 = 5, so that the transformation is 
conformal. Figure 2 shows that the curvilinear quadrilateral of Fig. 1 is to be mapped 
onto a rectangle of length ,!jz - E, and width Q - or. The Riemann IMapping 
Theorem guarantees that any simply connected domain with more than one boundary 
point can be conformally mapped onto any other simply connected domain with more 
than one boundary point. This theorem does not, however, give any information 
about the relation between the boundary points of the domains. In order for the 
transformation to be useful, it is necessary that the corner points of the physical 
domain P transform to the corner points of the transformed rectangle ‘r. 

Corner points of P map to corner points of T if and only if the conformal modules 
of the two regions are equal [8]. The conformal module of a rectangle is by definition 
the ratio of its length to its width; thus the module of the transformed region T is just 
W-1 = (52 fMq2 - 7,). F or convenience in labeling an M x ?1’ finite-difference 
grid, it would be desirable if c and 71 could be chosen such that 5, --- 1, t, =.- M. 
7, --: 1, and r/z -: N. But such an arbitrary choice is not possible if the transformation 
is to remain conformal, since m(T) must equal m(P). However, if a linear scaling of f 
is made, so that f :- Sx and q = 5, then x and 5 can be chosen as desired (i.e., x1 !. 
x2 M, etc.). The constant S is related to m(P) by 

m(P) := r, - Cl = S(hf .- 1) . -- 
772 - 711 N-I 

(IO) 

For the simple geometry of Fig. 1, m(P) can be determined analytically, as in shown 
in the Appendix. However, the determination of the conformal module m(P) for an 
arbitrary region is a difficult task. Therefore it is desirable to have a numerical procc- 
dure for determining S. 

Clearly, if, for example, the solution for y(x, 5) were known, then the transformed 
Cauchy-Riemann equation 

I ax ay 
s ax -: i:5- 
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could be integrated along a line of constant [ to give 

or 

This same relationship was used by Pope to determine the scale factor in his grid 
generation procedure. His derivation was based on a general condition for ortho- 
gonality, and he did not discuss the connection between the scaling constant S and the 
conformal module m(p). 

Of course, Eq. (11) cannot be used unless y is known. We tind, however, as did 
Pope, that if S is recomputed at each iteration as the numerical solution for y is 
iteratively generated, then convergence is rapid and the results are in agreement with 
those obtained if the analytical form for m(P) is used to determine S. 

In terms of the stretched x-5 coordinates, the above constraints on the transforma- 
tion require only that the stretching functions .$ =f(x) and 17 - g(i) be chosen such 
thatf(x) -: SfO(x), wheref&) and g(0 are chosen so that 

My,) = XI I-- 1, 

The numerical grid then has A4 -- 1 by N - 1 cells, with dx = dt: = I. 

SOLUTION TECHNIQUE 

Equations (9a) and (9b), including the scale factor S, can be solved by using succes- 
sive overrelaxation. Sweeps are made through the x-i grid, with x being updated on 
one sweep and y being updated on the next. The given Dirichlet conditions are 
linearly interpolated to generate initial guesses for x and y. 

As alternating sweeps on x and y are made, the x and y values associated with a 
particular boundary x-i grid point change on those boundaries where Neumann 
conditions are specified. The most recent y values at the grid points of the surface and 
bottom boundaries are used in computing xC for updating x on these boundaries. 
Then these updated x values are used to compute new y values for these boundary 
grid points; these new y values become the Dirichlet conditions for y when the next 
sweep through the grid is made to update y. This shows the manner in which the 
solutions of x and y are coupled through the boundary conditions. After each sweep 
on x and y, the value of S is updated using Eq. (1 I). 
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RESULTS 

Figures 3-6 show several orthogonal grids generated by the above technique. 
Table I shows the packing functions,f, and g used for these fi_pures. The functional 
forms of& and g were chosen to give packing in the desired areas. The value (I -y-y 0.95 
in Table I was chosen to give the desired intensity of packing. In all cases the x lines 
are labeled from I to ;M and the 5 lines are labeled from 1 to .X7 for an A4 x 11’ grid. 
The coordinate lines are orthogonal to better than 0.1’ on the average. and to within 
1 .O” at the worst locations. 

FIG. 3. Stoke’s fourth-order surface profile with no packing of the grid lines. 

FIG. 4. Stoke’s fourth-order surface profile with packing of the grid lines to the surface and 
bottom boundaries. 
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Once the grid has been obtained, i.e., once x(x, LJ and y(x, 5) are known, the solu- 
tion of the problem at hand proceeds in the x-5 plane just as in the case of a non- 
orthogonal grid, with, of course, those simplifications that result from the ortho- 
gonality of x and i. 

Fro. 5. Modulated cosine profile with packing of the coordinate lines near the surface. 

TABLE 1 

The Packing Functions i = f”(x) and 7 -= g(l;) used to generate Figs. 3-6 

Figure Packing functions 
_-.. ..- .-- -. . ..~ _ . ..- - -... --. ~. ~.. ~ _~. - _---. 

3 f”(X) - x 
!?a = 5 

4 f”cu) = x 
N-l -sinh-l 

2 sinh-‘((N 1);Z) 
5 - .h$ 

> 

6 
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Frti. 6. Boundary cusp with both horizontal and vertical packing into the region of the cusp. 

APPENDIX 

Ko general techniques are available for the determination of the conformal module 
of an arbitrarily shaped region. However, the geometry of Fig. 1 can be treated by the 
following asymptotic method. Let the x-y axes be chosen so that the physical domain 
P is bounded by x := 0 on the left, x = z on the right, y .: -ys on the bottom, and 
1’ = ys(x) along the top (free surface), with the average surface lying at y = 0. Let 
V‘ -7. F(z) be the analytic transformation from the physical plane (with z =-- x -- iy) to 
the unpacked transformed plane (with IV = f 1 iq). The t and 1;, axes are chosen so 
that the transformed domain is given by 0 6 c < f,, ) 0 < 77 .s; Q . 

With this choice of axes: the conformal module is m(T) : ~O/~o . The equality of 
modules implies that if a value for Q, say, is spccilied, then the value of fa is also 
fixed. By determining f,, as a function of ;T0 and the parameters of the physical domain. 
the module m(P) can be determined. 

P(z) can be expanded as 

w = AZ -:- iB .-- i f [C, exp(-iliz) -- lIk cxp(ikz)], 
Is 1 

where the coefficients A, B, C,: , and Dk are all real. Equating real and imaginary 
components gives 

5 = Ax .’ T$l [C, CXpCky) - D, exp(-kky)] sin(kx), (Aii 

7 = Ay .j- B I f [C, exph) + Dk cxp(-,Q)l COS(~X) 
kl 

(42) 

Note that at s = n, 5 -.: to = Sm, so the task is reduced to determining A. 
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The bottom boundary condition, $x, -yB) = 0, gives the recursion relations 

Ay, = B, 

D, = -C, exp(-2ky,). 

The free surface y = ys(x) can be expanded in a cosine series as 

ys(x) ;- 2 a, cos(k.x). 
k-;-l 

(A3) 

The corresponding 7 coordinate line, v,, , can be expanded in a Taylor’s series about 
the average surface position, y = 0, as 

644) 

The derivatives of 7 in (A4) can be evaluated from (A2). Substitution of these deriva- 
tives and of (A3) into (A4) gives an expression for y,, as a series in cos(kx), 
k := 0, I ) 2 ).... Since the value of q,, is independent of X, the coefficients of cos(kx) 
must be zero for k > 1. This observation allows the determination of A to any desired 
accuracy by the inclusion of a sufficient number of terms in the series (A2), (A3), and 
(A4). 

For example, retaining only terms through k 7: 1 in (A2) and (A3) and retaining 
only the first two terms in (A4) give the lowest-order expansion for 7” : 

TO -_z [AYEI -t hCl(l -L exp(-2yd)J + [Aa, + C,(l - exp(-21),))] COS(X). 

Equating the coefficient of cos(x) to zero gives 

A =; qo[y, - &q’ coth(y,)]-1. 

The lowest-order approximation for the conformal module of the physical region is 
thus 

m(P) = rAjqo = ;; [l - ;al’ coth(y&&‘. 
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